direct product, metabelian, supersoluble, monomial
Aliases: S3×C32⋊2Q8, D6.9S32, C33⋊4(C2×Q8), C3⋊1(S3×Dic6), Dic3.1S32, (S3×Dic3).S3, (C3×S3)⋊1Dic6, (S3×C6).19D6, (S3×C32)⋊2Q8, C32⋊11(S3×Q8), C33⋊4Q8⋊1C2, C33⋊5Q8⋊3C2, C3⋊Dic3.27D6, C32⋊6(C2×Dic6), (C3×Dic3).19D6, (C32×C6).10C23, C33⋊5C4.1C22, (C32×Dic3).1C22, C2.10S33, C6.10(C2×S32), C3⋊1(C2×C32⋊2Q8), (S3×C3×C6).3C22, (C3×S3×Dic3).1C2, (C3×C32⋊2Q8)⋊2C2, (S3×C3⋊Dic3).1C2, (C3×C6).59(C22×S3), (C3×C3⋊Dic3).4C22, SmallGroup(432,603)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for S3×C32⋊2Q8
G = < a,b,c,d,e,f | a3=b2=c3=d3=e4=1, f2=e2, bab=a-1, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, cd=dc, ece-1=c-1, cf=fc, de=ed, fdf-1=d-1, fef-1=e-1 >
Subgroups: 980 in 198 conjugacy classes, 54 normal (18 characteristic)
C1, C2, C2, C3, C3, C3, C4, C22, S3, C6, C6, C6, C2×C4, Q8, C32, C32, C32, Dic3, Dic3, C12, D6, C2×C6, C2×Q8, C3×S3, C3×S3, C3×C6, C3×C6, C3×C6, Dic6, C4×S3, C2×Dic3, C2×C12, C3×Q8, C33, C3×Dic3, C3×Dic3, C3⋊Dic3, C3⋊Dic3, C3⋊Dic3, C3×C12, S3×C6, S3×C6, C62, C2×Dic6, S3×Q8, S3×C32, C32×C6, S3×Dic3, S3×Dic3, C32⋊2Q8, C32⋊2Q8, C3×Dic6, S3×C12, C6×Dic3, C32⋊4Q8, C2×C3⋊Dic3, C32×Dic3, C3×C3⋊Dic3, C3×C3⋊Dic3, C33⋊5C4, S3×C3×C6, S3×Dic6, C2×C32⋊2Q8, C3×S3×Dic3, C3×C32⋊2Q8, S3×C3⋊Dic3, C33⋊4Q8, C33⋊5Q8, S3×C32⋊2Q8
Quotients: C1, C2, C22, S3, Q8, C23, D6, C2×Q8, Dic6, C22×S3, S32, C2×Dic6, S3×Q8, C32⋊2Q8, C2×S32, S3×Dic6, C2×C32⋊2Q8, S33, S3×C32⋊2Q8
(1 19 14)(2 20 15)(3 17 16)(4 18 13)(5 45 10)(6 46 11)(7 47 12)(8 48 9)(21 25 30)(22 26 31)(23 27 32)(24 28 29)(33 37 42)(34 38 43)(35 39 44)(36 40 41)
(1 34)(2 35)(3 36)(4 33)(5 25)(6 26)(7 27)(8 28)(9 29)(10 30)(11 31)(12 32)(13 37)(14 38)(15 39)(16 40)(17 41)(18 42)(19 43)(20 44)(21 45)(22 46)(23 47)(24 48)
(1 14 19)(2 20 15)(3 16 17)(4 18 13)(5 10 45)(6 46 11)(7 12 47)(8 48 9)(21 25 30)(22 31 26)(23 27 32)(24 29 28)(33 42 37)(34 38 43)(35 44 39)(36 40 41)
(1 14 19)(2 15 20)(3 16 17)(4 13 18)(5 10 45)(6 11 46)(7 12 47)(8 9 48)(21 25 30)(22 26 31)(23 27 32)(24 28 29)(33 37 42)(34 38 43)(35 39 44)(36 40 41)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)
(1 24 3 22)(2 23 4 21)(5 44 7 42)(6 43 8 41)(9 40 11 38)(10 39 12 37)(13 30 15 32)(14 29 16 31)(17 26 19 28)(18 25 20 27)(33 45 35 47)(34 48 36 46)
G:=sub<Sym(48)| (1,19,14)(2,20,15)(3,17,16)(4,18,13)(5,45,10)(6,46,11)(7,47,12)(8,48,9)(21,25,30)(22,26,31)(23,27,32)(24,28,29)(33,37,42)(34,38,43)(35,39,44)(36,40,41), (1,34)(2,35)(3,36)(4,33)(5,25)(6,26)(7,27)(8,28)(9,29)(10,30)(11,31)(12,32)(13,37)(14,38)(15,39)(16,40)(17,41)(18,42)(19,43)(20,44)(21,45)(22,46)(23,47)(24,48), (1,14,19)(2,20,15)(3,16,17)(4,18,13)(5,10,45)(6,46,11)(7,12,47)(8,48,9)(21,25,30)(22,31,26)(23,27,32)(24,29,28)(33,42,37)(34,38,43)(35,44,39)(36,40,41), (1,14,19)(2,15,20)(3,16,17)(4,13,18)(5,10,45)(6,11,46)(7,12,47)(8,9,48)(21,25,30)(22,26,31)(23,27,32)(24,28,29)(33,37,42)(34,38,43)(35,39,44)(36,40,41), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,24,3,22)(2,23,4,21)(5,44,7,42)(6,43,8,41)(9,40,11,38)(10,39,12,37)(13,30,15,32)(14,29,16,31)(17,26,19,28)(18,25,20,27)(33,45,35,47)(34,48,36,46)>;
G:=Group( (1,19,14)(2,20,15)(3,17,16)(4,18,13)(5,45,10)(6,46,11)(7,47,12)(8,48,9)(21,25,30)(22,26,31)(23,27,32)(24,28,29)(33,37,42)(34,38,43)(35,39,44)(36,40,41), (1,34)(2,35)(3,36)(4,33)(5,25)(6,26)(7,27)(8,28)(9,29)(10,30)(11,31)(12,32)(13,37)(14,38)(15,39)(16,40)(17,41)(18,42)(19,43)(20,44)(21,45)(22,46)(23,47)(24,48), (1,14,19)(2,20,15)(3,16,17)(4,18,13)(5,10,45)(6,46,11)(7,12,47)(8,48,9)(21,25,30)(22,31,26)(23,27,32)(24,29,28)(33,42,37)(34,38,43)(35,44,39)(36,40,41), (1,14,19)(2,15,20)(3,16,17)(4,13,18)(5,10,45)(6,11,46)(7,12,47)(8,9,48)(21,25,30)(22,26,31)(23,27,32)(24,28,29)(33,37,42)(34,38,43)(35,39,44)(36,40,41), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,24,3,22)(2,23,4,21)(5,44,7,42)(6,43,8,41)(9,40,11,38)(10,39,12,37)(13,30,15,32)(14,29,16,31)(17,26,19,28)(18,25,20,27)(33,45,35,47)(34,48,36,46) );
G=PermutationGroup([[(1,19,14),(2,20,15),(3,17,16),(4,18,13),(5,45,10),(6,46,11),(7,47,12),(8,48,9),(21,25,30),(22,26,31),(23,27,32),(24,28,29),(33,37,42),(34,38,43),(35,39,44),(36,40,41)], [(1,34),(2,35),(3,36),(4,33),(5,25),(6,26),(7,27),(8,28),(9,29),(10,30),(11,31),(12,32),(13,37),(14,38),(15,39),(16,40),(17,41),(18,42),(19,43),(20,44),(21,45),(22,46),(23,47),(24,48)], [(1,14,19),(2,20,15),(3,16,17),(4,18,13),(5,10,45),(6,46,11),(7,12,47),(8,48,9),(21,25,30),(22,31,26),(23,27,32),(24,29,28),(33,42,37),(34,38,43),(35,44,39),(36,40,41)], [(1,14,19),(2,15,20),(3,16,17),(4,13,18),(5,10,45),(6,11,46),(7,12,47),(8,9,48),(21,25,30),(22,26,31),(23,27,32),(24,28,29),(33,37,42),(34,38,43),(35,39,44),(36,40,41)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48)], [(1,24,3,22),(2,23,4,21),(5,44,7,42),(6,43,8,41),(9,40,11,38),(10,39,12,37),(13,30,15,32),(14,29,16,31),(17,26,19,28),(18,25,20,27),(33,45,35,47),(34,48,36,46)]])
45 conjugacy classes
class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | 3D | 3E | 3F | 3G | 4A | 4B | 4C | 4D | 4E | 4F | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | 6I | 6J | 6K | 6L | 6M | 12A | 12B | 12C | 12D | 12E | ··· | 12J | 12K | 12L | 12M | 12N | 12O |
order | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 12 | 12 | 12 | 12 | 12 | ··· | 12 | 12 | 12 | 12 | 12 | 12 |
size | 1 | 1 | 3 | 3 | 2 | 2 | 2 | 4 | 4 | 4 | 8 | 6 | 6 | 18 | 18 | 18 | 54 | 2 | 2 | 2 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | 8 | 12 | 12 | 6 | 6 | 6 | 6 | 12 | ··· | 12 | 18 | 18 | 18 | 18 | 36 |
45 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 8 | 8 |
type | + | + | + | + | + | + | + | + | - | + | + | + | - | + | + | - | - | + | - | + | - |
image | C1 | C2 | C2 | C2 | C2 | C2 | S3 | S3 | Q8 | D6 | D6 | D6 | Dic6 | S32 | S32 | S3×Q8 | C32⋊2Q8 | C2×S32 | S3×Dic6 | S33 | S3×C32⋊2Q8 |
kernel | S3×C32⋊2Q8 | C3×S3×Dic3 | C3×C32⋊2Q8 | S3×C3⋊Dic3 | C33⋊4Q8 | C33⋊5Q8 | S3×Dic3 | C32⋊2Q8 | S3×C32 | C3×Dic3 | C3⋊Dic3 | S3×C6 | C3×S3 | Dic3 | D6 | C32 | S3 | C6 | C3 | C2 | C1 |
# reps | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 2 | 4 | 3 | 2 | 8 | 2 | 1 | 1 | 2 | 3 | 4 | 1 | 1 |
Matrix representation of S3×C32⋊2Q8 ►in GL6(𝔽13)
12 | 1 | 0 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 12 | 0 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 1 |
0 | 0 | 0 | 0 | 12 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 9 | 0 | 0 | 0 |
0 | 0 | 0 | 3 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 8 | 0 | 0 | 0 |
0 | 0 | 0 | 5 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
G:=sub<GL(6,GF(13))| [12,12,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,12,0,0,0,0,12,0,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,12,0,0,0,0,1,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,9,0,0,0,0,0,0,3,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,8,0,0,0,0,0,0,5,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,12,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;
S3×C32⋊2Q8 in GAP, Magma, Sage, TeX
S_3\times C_3^2\rtimes_2Q_8
% in TeX
G:=Group("S3xC3^2:2Q8");
// GroupNames label
G:=SmallGroup(432,603);
// by ID
G=gap.SmallGroup(432,603);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,64,135,58,298,2028,14118]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^3=b^2=c^3=d^3=e^4=1,f^2=e^2,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,e*c*e^-1=c^-1,c*f=f*c,d*e=e*d,f*d*f^-1=d^-1,f*e*f^-1=e^-1>;
// generators/relations